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SUMMARY

In a simplified inviscid model of shock-wave boundary-layer inter-
action, Tsien and Finston have replaced the boundary lasyer by & uniform
subsonic stream bounded on one side by a solid wall and on the other
side by the interface with a uniform supersonic stream of semi-infinite
extent. Among other things, this model fails to simulate the separated
region or "dead-air" bubble that generally appears in a laminar boundary
layer subjected to an oblique incident shock wave of moderate strength.
In order to introduce a main feature of such a dead-air region, the model

has been modified herein by replacing the solid wall by an interface with
fluid at rest.

The presence of the boundary layer sandwiched between the outer
supersonic flow and the dead-air regionis found scarcely to modify the
shape, in the vicinity of the shock, of the expansive "corner" turn that
would exist if?the shock were incident directly on the dead-air region
without the intermediary of the boundery layer; there are local distor-
tions top and bottom, but these are reduced to negligible smounts seversal
boundary-layer thicknesses to the left or right of the effective corner.

In support of a phase of the work of Lester Lees, it is concluded
that in a more accurate treatment of the complete region of shock
boundary-layer interaction the Prandtl boundary-layer equations may be
applied to the entire extent of the disturbed boundary layer, applying
as a boundary condition a sudden turn of the displacement surface through
twice the shock deflection angle at the point of shock incidence. There-
by the flow details in the immediate vicinity of the shock will be some-
what in error, but the over-all features of the interaction are capable
of being given correctly. Present unknown elements in such an application
appear to be the point of transition from laminar to turbulent flow and
the form of the turbulent equetions where a separated bubble exists.
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INTRODUCTION

The complex problem of the interaction between shock waves and
boundary layers in supersonic flow is not yet clearly understood,
despite a number of theoretical studies (references 1 to 7). Among
these, the analysis of Tsien and Finston (reference 2) is singled
out here for further examination. In the Tsien-Finston model the
boundary layer is simulated by a iform subsonic stream of finite
width bounded on one side by a solid wall and on the other side by
the interface with a uniform supersonic stream of semi-infinite
extent. The fluid is assumed to be nonviscous and nonheat-conducting

and the disturbances are assumed small.

The boundary-layer perturbation calculated in reference 2 from this
model has the general charascter shown in sketch 1. The experimental
perturbation for a laminar boundary layer (e.g., references 8 and 9),
on the other hand, has the general character shown in sketch 2. The
regemblance is not close. A striking experimental feature is the pres-
ence of a separated region, which appears for all but the weskest inci-
dent shock strengths (references 3 and 9). ‘The separated region is not
simulated in the Tsien-Finston model of shock boundary-layer interaction,
and this constitutes an importent shortcoming of the model for leminar
boundary layers. For turbulent boundary laeyers subjJected to moderate
shock strengths, on the other hand, there will be no separation, and
the model may be quite good.

The air in a separated bubble is substantially at res%. An oblique
shock incident directly on a dead-air region, without the intermediary
of a boundery layer, is known to reflect as an expansion wave (see
sketch 3). Note that the interface in sketch 3 is deflected much like
the potential flow just above the actual boundary layer (sketch 2), a
feature completely unduplicated in the Tsien-Finston model (sketch l).
A natural inference is that the separated region dominates the behavior
in the immediate vicinity of the shock, and the upper surface behaves,
in that viecinity, substantially as if the entire boundary layer were
replaced by a dead-air region.

This tempting inference has been made to provide a boundary condi-
tion in the work of Lees (reference 6) and of Ritter (reference 7), along
with other simplifying assumptions; it is the purpose of the present
paper to test its validity on a simplified model applicable only to the
immediate vieinity of the shock. For this purpose a modification of
the Tsien-Finston model will serve: the solid lower wall of sketch 1 is
replaced by a semi-~infinite region of air at rest, or "dead air". Thus
the boundary condition of zero vertical perturbation velocity at the
wall is replaced by a condition of constant pressure along the boundary
of the dead-air region; in all other respects there is no change from
the original model. Experimentally (reference 9), an approximation to
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the condition of constant pressure is found over a substantial portion

of the separated air bubble including the part directly under the inci-
dent shock; the ultimate sharp pressure rise genérally occurs scmewhat

downstream of the shock.

It has been implicit in the discussion that attention was limited
to the boundary layer adjacent to & solid body. Also of interest, how-
ever, is the boundary layer between a two-dimensional supersonic jet and
the stationary fluid bounding it. The present modified flow model will
describe, in idealized fashion, the interaction of an oblique shock wave
(such a8 may emsnate from & nozzle lip) with such a jet boundary layer.
The model is, in fact, better adapted to such a fluid-to-fluid boundary
layer than it ig to the fluid-to-wall boundary layer.

The mathematicel analysis herein of the modified model is necessarily
parallel in e number of respects to the original work of Tsien and Finston.
Nevertheless, it has been thought worthwhile to provide a complete account
in an appendix for purposes of unity and clarity. The symbols used in this
analysis are presented in appendix A; the analysis, in sppendix B. An
abbrevisted version of the analysis is given in the main text. The inves-
tigation was conducted at the NACA Lewis laboratory.

SYNOPSIS OF ANALYSIS

Flow regions and governing equations. - In figure 1 are shown the
supersonic region (region 1) at the top, the subsonic region (regioa 2)
in the middle, and the dead-alr reglon (reglon 3) at the bottom. A weak
shock wave, or Mach wave, 1s Incldent on the interface between regions 1
and 2. The governing equatlons for the perturbation potential are

32 32
Region 1: »<l - Mlz> -—a—x% + ézl_ = 0, Ml > 1

2 2
2 aCPz aCPz
RegionZ:(- )—-—-—-+—=O <1
My 22 e ¥

In region 1 the perturbation potential includes a part (incoming wave)
which represents directly the incident Mach wave and a part (outgoing
wa.ves) which arises from the consequent warping of the interface between
regions 1 and 2.

Boundary conditions at each interface. - The boundary conditions are:
(a) The perturbation pressure must be the same on both sides of an inter-
face (taken to be zero at the lower interface), and (b) the flow inclina-
tion must be the same on both sides. In linearized theory, boundary con-
dition (a.) is essentially a condition on the axial perturbation wvelocity
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u, and boundary condition (b) is essentially a condition on the trans-
verse perturbation veloeity v. At the lower interface, condition (v)
yields no information, since no direction can be assigned to the zero
velocity in the bottom region; thus (a) and (b), as applied to both
interfaces, yield three boundary conditions. .

Solution in general form. - The general solution for each region is
expressed in the form of a Fourier integral; such a form is capable of
satisfying arbitrary boundary conditions. The variable of integration
is A, and terms like A;(\) cos Ax, By(}) sin Ax, and so forth, appear;
there are six Fourier coefficients 4;(\), Bj(A), Eg(R), Fa(N), Gz(N),
and Hp(\) to be determined.

Application of boundary conditions. - The velocity components in
Fourier integral form are now substituted into the three boundary con-
ditions; equating corresponding coefficients of sine terms and cosine
terms results, in effect, in six equations. Two of the equations yield
Ex(A) = Fo(A) = 0; thus there remsin four equations which are solved
similtaneously for the four remaining Fourier coefficients A;(A), B{(M),

Ga(1), and Hy(A).

Solution for pressure along upper interface. - The perturbation
pressure along the upper interface is proportional to u, there; the
expression is of the form of a Fourier integral involving Go(A) and
Hp(\), which are now known. Evaluation and simplification of the
integral is complicated and tedious; the final result is expressed in
series form and evaluated numerically. In this evaluation, functions
tebulated by Tsien and Finston are employed.

Solution for displacement of each interface. - The local displace-
ment n(x) of an interface from its undisturbed position is obtained by
integration of the slope dq/dx; this slope is related to vy by

dg 4 72
dx—Uz

Like up, Vv, has been obtained as a Fourier integral involving Gp(})
end Hy(M), and G; and Hp are now known. Again, evaluation and

gimplificaetion of the integrals is an involved process, and the final
displacements are exhibited in series form and evaluated numerically.

RESULTS AND DISCUSSION

Present Modified Tsien-Finston Model

Mach number parameter 6. - In the results herein the Mach numbers
M; and M, of the respective supersonic and subsonic streams appear in
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a Joint parameter 6 as well as individuslly.. For & given value of .6,
Mp is a prescribed function of M; (see equation (B32)). The curves of
Mp against M; for several values of 6 are given in figure 2, which
has been reproduced from figure 3 of reference 2. Tsien and Finston
note that if the representative Mach mubers for the boundary-layer
flow and the free stream are taken to be 0.8 and 2, respectively, then
the corresponding value of 6 in the flow model is approximately 3m/4.

Pressure distribution. - Curves of the pressure distribution along
the upper interface calculated from equations (B62) and (B63) with the
aid of functions tabulated in reference 2 are given in figures 3(a),
3(b), and 3(c) for values =/4, x/2, and 3n/4, respectively, for the
Mach number parameter 6. These curves exhibit the same infinite pres-
sure peak at the point of shock incidence (£ = 0) found by Tsien and
Finston with the original model. A similar peak was found by Lighthill
(reference 5) in his model with continuous, rather than stepwise, veloc-
ity profile; in that case the peak occurred inside the simulated boundary
layer at the point of reflection of the shock from the sonic line. Such
a peek will be modified in & real flow and probably will appear as a
localized region of high pressure. ’

Displacement of upper and lower inteffaces. - The respective dis-
placements of the upper and lower interfaces from their undisturbed
positions have been designated Ty and g,5 both are functions of the

longitudinal distance x. Convenient corresponding nondimensional
. nr.~ '

ud % E} z —E’ a'n'd X *
against longitudinal distence in terms of these nondimensional parameters
are plotted in figures 4(a), 4(b), and 4(c) for 6 equal to =/4, x/2,
end .3r/4, respectively. The infinite slope at x = O, associated with
the pressure peak there, is so localized on the dr¥awings as to be
scarcely distinguishsgble.

parameters are Curves of the displacement

The scales are such that the vertical and horizontal displacements
of a given interface are to the same geometric scale for the case
¢ = 1/8 radian; for this value of £ the separation of the interfaces
is to correct scale when, in addition, By = n/20 for 6 = n/4¢ (M; = 2.5,

M, = 0.988); Bp = n/10 for 6 =mx/2 (My = 2.7, M, = 0.95); and By = /6
for 6 = 3t/4 (My = 3.1, My = 0.85). Numerical values of the ordinates
and sbscissas are also tabulated in tables I and II.

Comparison with supersonic flow above still air, no boundary layer. -
The curves are now to be compared with the conjecture given in the intro-
duction: namely, that in the simplified model of figure 1 the upper .
interface behaves, in the vicinity of the shock, substantially as if the
entire boundary layer (represented by region 2) were replaced by & dead-
air region (an extension of region 3); that is, that the upper interface
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deflects through an angle 2& Jjust as the dead-air interface does in
sketch 3. The comparison shows that the curves in figure 4 approximate
the conjJectured behavior; both interfaces asymptotically approach the
expansive turn through an angle 2e.

For each interface, the final asymptote does not intersect the
initial asymptote (which is the E-axis) at the point of shock incidence,
& = 0; instead the point of intersection lies somewhat downstream thereof.
The point of intersection of the two asymptotes may be thought of as the
effective "cornmer" for the turn through 2eg; its displacement amounts
from one to several "reduced" boundary-layer thicknesses (reduced thick-
ness sz), depending on the value of the Mach number parsmeter 6.

The local deviation from the asymptotic behavior, that is, from the
rectilinear corner turn of sketch 3, is limited essentially to several
reduced boundary-leyer thicknesses @stream and downstream of the effec-
tive corner.

Further Generalizetion of Tsien-Finston Model and Limitations

The flow model of figure 1 is supposed to simulete only one aspect
of shock boundary-layer interaction, namely, the local effect of the
separated region in the vicinity of the point of shock incidence. An
obvious further generalization, later found to be of questionable util-
ity, is sketched in figure 5. Here the dead-air region is limited to a
finite length to approximate the "separation bubble,"” and on either side
thereof the solid-wall condition used by Tsien and Finston is reapplied.

When points S and R are both more than several reduced boundary-
layer thicknesses from I, the point of shock incidence, their effects
in the neighborhood of I would be expected to be small. This consider-
ation serves to Jjustify the use, for the neighborhood of I, of the model
of figure 1 in wvhich § and R are effectively removed to minus and plus
infinity, respectively. .

There is another mentionable difference between the models of fig-
ures 1 and 5: In figure 1 the perturbation pressure in the dead-air
region is taken to be zerc (for simplicity), whereas a positive pertur-
bation pressure is intended in figure 5. The pressure rise in figure 5
is effected by means of a weak shock or Mach wave incident Just above &S,
resulting in the general upward slope of the boundary layer between §
and I. This more realistic positive pressure perturbation in the dead-
alr region may be introduced into the model of figure 1 by imagining the
weak shock associated with point S +o occur at minus infinity to the
left. Then the entire flow field will have an upward deflection (say &)
corresponding to the flow deflection through this shock. As a conse-
quence, the interface deflections of figure 4 will have superposed a
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deflection 1 = &.x (or 1 o= A ); this is substantially
=% 2npo 26 2B 2e ¢’

as though each figure were rotated counterclockwise through the angle
Gl. . :

As & generslization from a singlie aspect to a more complete picture
of shock boundary-layer interaction, the model of figure 5 has serious
shortcomings. The model by itself is insufficient to determine the posi
tions of separation and reattachment S and R; for this purpose the
neglected viscosity will have to.be brought into the picture. Moreover,
betwveen I and R the actual boundaery-layer flow will probsbly become
turbulent, and the neglected turbulent momentum exchange across both of
the idealized interfaces will markedly influence the shape of the effec-
tive interfaces and the location of R. The tramsition to turbulent
flow will probably be decisive in determining R unless the incident
shock is relstively weak, since otherwise the large abrupt pressure rise
upon reattachment would be expected to reseparate a laminer layer but
not a turbulent one. For these reasons it has not seemed worthwhile to
meke a serious effort to obtain an analytical solution for this model.

Applicability of the Assumptions of Boundary-Layer Theory

On the present model of shock boundary-lsyer interaction, the region
in which the upper and lower interfaces show substantial curvdtures and
deviations from parallelism has been shown to be limited to one or two
reduced boundary-layer thicknesses on either side of the point of shock
incidence; a similar result is found for the original Tsien-Finston
model. These results imply that it is only in this region that the com-
ponent pressure gradient: dp/dy is significant. Elsewhere the primary
assumption of 'the Prandtl boundary-layer theory, namely, that dp/dy
may be neglected, appears to be applicable. i

The situation seems to be as follows: Both models of shock boundary-
layer interaction completely neglect viscosity, but include the inertial :
effects in both x- and y-directions, although in idealized fashion. The
boundary-layer theory, on the other hand, includes viscosity and the
inertia effects in the x-direction alone, the latter with idealization.
The results of these models, despite their neglect of viscosity and
other idealizations, suffice to delimit the small region directly under
the incident shock in which the inertia effects in the y-direction must
be Included. It appears to be a proper inference that the Prandtl
boundary-leyer equations, laminar or turbulent as the case may be, and
with provision for interaction with the outer flow, may be applied
upstreem and downstream of this region, except possibly at the point
of reattachment of the separated bubble. The separated bubble itself,
except that portion directly under the shock, is included in the
region of applicability.
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Furthermore, the extension of the boundary-layer equations into the
forbidden region, with the assumption of a sudden turn of the displace-
ment surface through an angle 2& at the shock, appears to be Justified
in a practical analysis where accuracy in local flow details at the
shock is secondary to the over-all picture; this conclusion is in sup-
port of a phase of the treatments of references 6 and 7. (If the
incident shock is too weak to cause & separated bubble, the 2¢& +turn
at the shock must be replaced by another condition.) Present unknown
elements in such an gpplication appear to be the choice of the point of
transition to turbulent flow, if the boundary layer is not initially tur-
bulent, and equations relating pressure distribution and displacement
thickness for a separated region of a turbulent or tremnsitional boundary

layer.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 19, 1952. .

[Note added in proof: In a newly published paper ("A Mixing Theory for
the Interaction Between Dissipative Flows and Nearly Isentropic Streams,"
Jodr. Aero. Sci., vol.-19, no. 10, Oct. 1952, pp. 649-676) Crocco and
Lees have, in effect, supplied the missing relation between pressure dis-
tribution and displacement thickness for a turbulent or transitional
boundary layer by means of an assumption on the rate of mixing with the
outer flew. In their work the boundary layer is replaced by a quasi-one-
dimensional flow with the aid of quantities calculated by the Prandtl
boundary-layer theory. There is no conflict between the affirmative con-
clusions of the present paper on the applicability of the Prandtl theory
and the position taken in the Crocco-Lees pgperl
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APPENDIX A

SYMBOLS
The folloﬁing symbols are used in this report:

A (N); B3 (M) Fourier coefficients appearing in the solutions for
’ the supersonic stream

Ep(M), Fa(A),  Fourier coefficients appearing in the solutions for

Ga(\), Hp(X) the subsonic stream
Il,Iz,...,Ig Desgsignation for nine integrals considered in the
analysis
b " thickness of subsonic region
£ . function of x and y ‘representing incoming waves

function of X and y representing outgoing waves

M Mach‘number

P statié pressure

Ap change in static pressure | :

R ' reattachment point in figure 5

S = 2b\ Bo; also separation point in figure 5

U undisturbed velocity

u,v disturbance velocity components in x- and y-directions,
respectively .

W= X + Bly .

X,y rectangularICartesian coordinsates

z = Y

By = Mm% -1

Bz; V1 -

T parameter introduced in eguation (B3)
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Superscripts:
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deflection angle of compression wave

displacement of interface from undisturbed position

2
Mz
0 Mlz
Mach number parameter defined by cos T =
2
2
Ma B2? 8
wZ) "oz S
3l P1 |
variable of integration J
ax/ 2bfy
0, £E<0
step function defined by &)= %: , E=0
1, £>0

density

disturbance velocity potential

value of given function evaluated at the lower interface,
y=-b ,‘

value of given function evalusted at the upper inter-
face, y =0 |

limiting value of given function as y approaches
zero through values greater than zero

limiting value of given function as y approaches
zero through values less than zero

denotes quantities in the supersonic region y >0
(excepting 1Ij)

denotes Quantities in the subsonic region -b <y <0
(excepting I,) ‘ ‘

indicates limit of given function as 7y -+ 0; for

example, f£(y)* = lim £(y)
=0
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APPENDIX B

ANALYSIS

In the present report, the boundary layer has been replaced by a
uniform subsonic stream of f£finite width b which is bounded on one side
by fluid at rest and on the other side by a uniform supersonic stream
of semi-infinite extent. For purposes of ansalysis, this configuration
will be considered oriented with respect to a rectangular Cartesian
coordinate system such that the positive x-axis is parallel to,.and in
the direction of, the undisturbed flow and coincides with the undisturbed
interface between the subsohic and supersonic streams, and such that the
origin denotes the point of incidence of the given shock wave with this
interface (see fig. 1). Thus, for -b <y <O the flow is subsonic,
while for y > 0 the flow is supersonic. Furthermore, all quantities
in the supersonic region will be denoted by the subscript 1 and all.
quantities in the subsonic region will be denoted by the subscript 2.

Supersonic Region
Governing equation and solution for incoming waves. - In the super-

sonic stream, the linearized differential equation for the disturbance
velocity potential ¢ 1is given by

2. e
1 1 i
Bl —5-—%=0 (1)
T ox JSy ,
and has as 1ts solution
9, = £(x + Byy) + glx - B1y) (B2)

-

wvhere f and g are arbitrary functions. The undisturbed flow has
been teken in the positive x-direction so that waves represented by
fEx + Blyg will be incoming waves while those represented by

glx - B1y) will be outgoing waves emanating from the upper interface.

For purposes of the analysis, the form of the function £ will be
specialized and taken to be

(
0 ) X + B]_y <0
£(x + B1y) = < (B3)
i e_Y(x * B]_Y)_ :IJ X + >0
\?BI ; By

where U, is the undisturbed velocity in the supersonic stream and
wvhere y and ¢ are parameters. If 1 tends to zero, the incoming
waves will degenerate into a single compression wave with deflection
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engle €, and the point of incidence of this single compressive wave
with the upper interface will be the origin of the given recta.ngu_'l.a.r
Cartesian coordinate system.

Now, by definition, the components u and v of the disturbance
velocity are given in terms of the disturbance velocity potential ¢
by the relations

jU.=6]—{;V—§ i (Bé:)

Therefore, the components of the disturbance velocity of the incoming
waves are given by :

(
0 Py X + Bly <0
Y1 ,incoming =J 1 (B5)
-Uqe . -r(x + By¥), X+ By >0
\ P1 ‘
and
0 s X+ By <0
V1, incoming = . (B6)
) -’Y‘(X + Bly)
-Uze R X+ By >0

Incoming and outgoing waves in Fouriler-integral form. - It will
prove useful to express the disturbance velocities of the incoming waves
in the equivalent Fourier-integral form. To do this, it is noted that
the components of the disturbance velocity of the incoming waves are
proportional to the function

o -, w <0

h(w)= | (B7)

e—W, w>0

where W= X + By, and that h(w) can be represented in an entirely
equivalent form by

=

h(w) = 5

= —T __ cos AW + - sin Xw) dx (B8)
o 2 2 z )
ro o+ A Yy + X

c

2665
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Furthermore, the potentisal due to the outgoing waves can also be expressed
in Fourier-integral form, namely, . ’

g(x - Byy) = Uy f[}l(X) sin A(x -\Bly) + By (A) cos A(x - Bly)] ar
i o - |

(B9)

vhere Aj(A) and B;(\) are undetermined Fourier coefficients. Thus,
after differentiation of the expression for. g(x - Bly) to obtain the

disturbance velocities due to the outgoing waves, the separate distur-
bance velocities can be superposed and the Fourier-integral expressions
for the components of the total disturbance velocities (of both incoming
and outgoing waves) obtained. Evaluated at the upper interface, these
disturbance velocity components will then be given by

. -eU. 4
1 T A
Uy o = — —cos AXx + ————= sin Ax ) d\ +
1,y=+0 :)‘tBl f (YZ + XZ YZ + XZ )
0

Uy - EAl(x) cos Ax - AB{(A) sin xx] ax (B10)
o

and

v % ( Y cos AX + A inAx}) dx
_ = - ——— —_— x -
L,y=t0 = "X NCRRRY N
0
Bllﬁ_f EAl(X) cos Ax - ABy (1) sin) x] ax (B11)
0

Subsonic Region

Governing equation and general solution in Fourler-integral form. -
For the subsonic streem, -b< y< O, the linearized differential equation
for the disturbance velocity potential is given by ‘

2 d%e o2 )
Eg'.-l- -T;y-% =0 (B12)

B2
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and the solution ®> can be expressed, among many possible forms, as

95(x,7) = Uy coshl}Bz(:wbil . E}z(l) sin Ax + Fo(\) cos kﬂ an +
o :
Us sinh XBz(y+b§’ . E}z(k) sin Ax + Hp()) cos X}H ar
0 ‘ (B13)

vhere Ez(}), Fo(A), Go(A), and Hp(A) are also undetermined Fourier

coefficients. Then, by retracing the steps just taken for the super-
sonic case, there is obtained

us(x,y) = Ui/—\ coshl:lﬁz(yﬂ:ﬂ . ;2(1) cos Ax - Fo(A) sin xﬂx ax +
0

U, sinh xaz(y+b§l © |Go(A) cos Ax - Ha(A) sin x:glx ar
' (B14)
and
vo(x,¥y) = UgBp sinh le(y+b€, - |Eo(\) sin Mx + Fp()) cos xﬂx ar +
5 n
° ~
UsBp cosh[}Bz(yﬂ))] . fz(x) sin Ax + Hp(A) cos )\:ﬂx ax
) ' (B15)

Boundary Conditions

In these solutions for the subsonic and supersonic streams, six
unknown Fourier coefficients Aj(L), Bi(\)}, Ea(A), Fa(r), Go(r), and
HZ(K) exist. However, these coefficients are determinable by boundary

conditions at the upper and lower interfaces. The physical conditions
which must be satisfied across these interfaces are: (1) equal static
pressure, and (2) equal inclingtion of the flow. At the upper interface,
condition (l) gives, in the small perturbation epproximastion,

i/

2665
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(1) P1U19 yoio = -PaUUp y=_g Tor all x (B16)

At the lower interface, the perturbation pressure is taken to be zero;
condition (1) therefore reduces to

(II) up yop = O for all x (B17)

Condition (2) gives no information at the lower interface since the flow
speed is zero below the interface; at the upper interface, this condition
yields (sma.ll perturbation approximation)

(I11) V2,y=-0 Uy = V1, y=+0 Us for all x (B18)

Establishment of the four equations for the four Fourier coefficients.

With use of equation (Bl4), boundary condition II jmplies

Uy EEZ(X) cos Ax - Fo(\) sin h{lx a =0 (819)

so that Eo(A) and F,(A) vanish identically and 93 reduces to

= Uy sinh XBz(y+bﬂ [GZ(X) sin Ax + Ho(\) cos XJEI ax

(B20)

G
aV]

whence

us = Uy sinh XBZ(y+b):| [xez(x) cos Ax - MHp(\) sin x:c:l an
0 (B21)

and

Vo = UoBg cosh‘}ﬁz()ﬁbﬂ EGZ(X) sin Ax + AHo(A) cos X:ﬂ ax
(B22)

Substituting equations (B10) and (B2l), the latter evaluated at
¥y = - 0, into equation (B16), that is, boundary condition I, gives

-
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:1 p]_Ul2 {“_—EGI—[(TT:‘? cos Ax + ;2%? ein h) ax {I}Al().) cosXx - ABy(A) sin lx] d‘;}

, : ) (B23)
= pUp sinh (lbﬂz)l_;\c-z()\) cos Ax - AHp(2) sin m] ax ‘
o .

whence, upon equating corresponding Fourier coefficients and making use
of the fact that

2 2
poU M
U 2 M 2 1
P1V1 i
there is obtained
e T
Aj(A) - Go(A\) —= sinh = B25
and
Mzz 1
B;(\) - Ho(A) —5 sinh (AbBs) = =& ——s (B26)
1(0) - Ba(2) ™ (0B2) = 5= 72

Similarly, boundary condition III (equation (B18)) implies

, U,Uz8 cosh (AbB,) EGZ(K) sin Ax + XHp(\) cos ’Ax] a

o - -
- . 1 . . .
= Uluz{(—ﬂ&?[ (;2—{—)? cos Xx + m sin Xx) ax - B]‘_[ EA]_(X) cos Xx -~ AB(2) sin 70'] d;.}

(B27j

so that

B ‘ B}
A (A + Bo(h) E% cosh (¥bBy) = ﬁx;l ~ I = (28)
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1

- B29
"Bl Y (B29)

B1(A) - Gz(k) — cosh (XpBg) =

, Hence, the problem is now reduced to one of evaluating the four
undetermined Fourier coefficients | A1()), B1(N), Gz(2), and EHp(2) by

means of the four equations (st), (B26), (B28), and (B29).

Evaluation of Fourier Coefficients

Solving equations (B25), (B26), (B28), and (B29) simultaneously
yields the following expressions for Gp(A) and Hg(a):

22 2
o [[22] st 2 o o)

1 B1

_ -2¢ 1
ﬁﬁl 7,2 l: <_E sinh (Xsz) + ——l cosh (szzgl
(B30)

2 fi2\2 -
Hy(N) [2—22- cosh? (opy) + (z—z—z) simm® O*bBZ)]
1 1

B} B - Mp@
- Z28 1 [éz T cosh (xpy) - ’EE sinh (XbBs)
M

x
(B31)

In addition, if the Mach number parameteg 6 is defined such that®

(B32)

8p1though simplicity is not necessarily thereby achieved, 6 is intro-
duced so as to maintain a parallel presentation with that of reference 2.
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then
M2 g Bzz ]_; Mo? : cosh(2XbBy) - cos 8
—5 sinh? ('Xbﬁz) + 3 cosh? (xbgz) = E( 5 2 5
M P1 My cos? 5
(B33)

so that Go(X) and Hy(A) are also given by

2
1 Mgz cosh (2XbBy) - cos 8
G\ jz( 2
M 2
1 cos

—25 Bz
=% =, [ < ) sinh (WbBs) + B, cosh (ijazil

(B34)

o] 1

and

‘ 2
1 (M5°\ cosh (2X\bB3) - cos @
Hp(M) I:E (Mlz) 20 ]

2
_ 28 1 B2 v Mp™ |
— cosh (Ab - —= s8inh (\b
T WPy Y8 4 a2 L’l (xef) M, 2 ( Bzﬂ

N ©

(B35)

Similarly, by means of the same equations, the following expressions for
Ay (M) eand By(N) are also obtained:

2 2,2
A0) I:gfz cosh? (xbB,) +C:2?) 5inh? O‘bﬂzil

Bo? M2 B

(B386)

2665

-



Go92

NACA TN 2860 19

and
242 2
BN [C%) sinh® (AbBy) + ﬂiz cosh® (mzﬂ
My B1

2
2 2 2
e 1 r ¥2” B2 - <i42 2 B2 2
= W E: T 1_—{12 AL sinh (AbBy) cosh (Abpz) M—lz) sinh® (MbBy) + EE cosh® (Abp,

(B37)
Solution for Pressure Along Upper Interface

_With the Fourier coefficients Aj(A),.Bi(A), Gp(A), and Hy(M)

evaluated, the solution of the originally stated problem is now complete.
However, there exist other quantities of interest such as the pressure
distribution along the upper interface and also the displacement of each
interface from its undisturbed position. ThHese quantities will now be
considered.

If the change in pressure from the undisturbed value is denoted by
Ap, then the linearized value is '

Ap = - pUu
Hence, denoting quantities at the upper interface by the subscript U

and those at the lower interface by the subscript L, equation (B2l) and
boundary condition I give

(2o)y = PoU2U2 ym-0 = -pzuzzv/— sinh (XbB,) [mz(x) cosAx ~AHy()) sin m] ax (BSB)
0 ' )

where Gp(\) and Hp(A) are given by equations (B34) and (B35). Or,
with use of equation (B24) and also since equation (B32) further implies

2
(’”‘zz Bo? .
=) - =%
26 _1=M1 B1”

cos 6= 2 cos el

(B39)
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sin —g— = of1 - cos? 7 = (m40)
equation (B38) can then be written as
(t2) |
T Uz = 1'(4:58 COSZ 'g' (——Z—l'—z CbS ix + T}—E sin XX dl -
5 P10y 1 Y.+ N LA 8
0
%sinze Y ¢os A + A sin Ax an o+
5 (+2 + AZ)(cosn 2XbB, - cos 6)
1.0 X\ sinh (2MbB3) cos Ax - y sinh (2\bB2) sin x
2
o (+2 + »2)(cosh 2XbBy - cos 6)

‘ . (B41)

Limit as y-0 (incoming waves + step functionl. - If v-+0, the
incoming waves will degenerate into a single compression wave with
deflection angle ¢&. Consequently, in order to obtain the value of the
pressure change at the upper interface for a single compression wave of

' Oﬁp)U
deflection angle €, let v-*0 in the expression for T

3 U

From equation (B8)%

B‘Here , the subscripts under I designate the various integrals rather
than any position in a subsonic or supersonic stream.

g
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@ 0 ) x< 0
I, = Z—T-z—coskx+2—}‘é-sin)\x)dk= -’25 5 x=0
T+ A Y + A _
e rx’ x>0
(Be2)
whence ' -
® 0, x<0
1im "z—Y-—ZCOSM-F—ZL—Z-Bin)»X) an = %, x=d
=0 Yo+ X T + A .
0 ‘It, x>0
(B43)

For the other integrals of equation (Bél), a theorem Jjustifiying the
interchange of the processes of integration and of passing to a limit is
necessary. One such appropriate theorem which will suffice for the
anslysis in this report will now be stated (reference 10, p. 474).

DEFINITION. - Iet R = (awaﬁ) denote the rectangle determined by
B<X<w, <t <pB, p finite or infinite. The function f(x,t) is
sald to be REGULAR IN R when: (1) £(x,t) bhas no point of infinite
discontinuity in R; (2) f£(x,t) is integrable in a < x < » for each
t in o<t <B. -

THEOREM I. - (1) Let f(x,t) be reguler in R = (a=aB), p finite

© or infinite, except possibly on the lines x=18a;, . . ., X = a.. (2) Let

£(x,t)ax
a

be uniformly convergent in o <t <. (3) As t+1tg, tg finite or
infinite, let £(x,t) approach a limiting function F(x) uniformly in

any region a < x <D, except possibly on the lines x = By, oo+ «; X = &g

Then, © .

lim f(x,t) dx exists.
t-’to
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(4) et F(x) be integrsble in any region a <x < b.

lim f(x,t)dx{ F(x)ax
t by .
a . a

Then,

Thus, for

= Yy cos Ax
I, = P— ax (Bas)
o (v* + A*)(cosh 2bM\3, - cos 6)
first letting z = My so that
I, = cos (yxz) dz (B45)
(22 + 1)(cosh 2byzgy - cos 6)
and then applying theorem I, there is obtained
1 dz 7 7t
T+0 1 - cos 6 22 4 1 2(1 - cos @) 4 gin? %
0
(B46)
For
Iy = [ X sin Ax ax (B47)
o (12 + 22)(cosh 2bBoh - cos 9)
and
A\ sinh(2bBo\) cos Ax
I, = ax (Ba8)

o (% + 22)(cosh 2bBo\ - cos 6)
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let
S = 2oy (B49)
X
E= 5pa- (B50)
2bB,
so that
{_J
S sin S8
7t
Iz= as (B51)
g2
0 (?2 + 55 (cosh 8 - cos 9)
4b Bo
and
‘ S sinh S cos %§
I, = - as (B52)
2
0 <%2 + —-%——E (cosh S - cos )
4b%Bo
Then, ' -
sin 14
lim Tz = x as (B53)
3 S(cosh S - cos 9)
=+ 0
0
and
"8inh S cos %;
lm I, = S(cosh S - cos 6) ds (B5¢)
T-+0
Lastly, - !
' v sinh(2\bBs)sin Ax
lim Ig= 1lim - a= 0
r*0 ¥ >0 (r% + »2)(cosh 2NoB, - cos 6)
° | (855)
Solution for single incoming compressive wave. - Combining these

five limits yields
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(ao); -
lim — 9 - 28 coszg-.l(?-;) —%sinze (__l__g)_

1
0 = plUlz By 4 sin® 2
- . h -
1 ) gin 5?5 1 - sinh S cos §ﬁ_§
75 8in” 6 S(cosn § - cos 6) 5 g sIn 6 S{cosh S - cos 6) as
0 0
(B56)
where 1(¥) 1is defined by
o, E <O
1
1(g) =< 3 E =0 (B57)
1, £ >0
Now, it can be shown by contour integration that, for ¥ = O,
- - -6 .
L sin 25 L, ; (eme e‘(?)’é e(’%e)s o
’EO S(coshs—cose) Bsng &t 8in 6 an+z;% 2n+%,5
(BS8)
and
- ) &)
sinh S cos -(2n+l)€ LS
1 2 g+ 57570
2 S(cosh S - cos 9) Zn+2 -7 2n+ 3
0
B59)

Furthermore, since the integrands are odd and even functions of £,
respectively, it can immediately be deduced that, for & <O,

= s(cos‘hs-cosejds=8,sinz%'ausme on+2-0 204 O
x ®

1f- 51"? ‘ -1 | 1 ; (2mrL)E eéﬁ (ﬂe) k<o
b

(B60)
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sinh 5 cos —5
2n S{cosh 8 - cos GT

(""’)

s = EEEE: (2n+1)E e<i%)z

2n + 2 -9
T

v

9

ﬁ-

3

‘g<o

25

(B61)

Therefore, with the substitutlon of these results into equation (B56),

it follows that:

,( = émwz 9)5
4e e % :
;B— sin 6 0 » E <0
1 n=0 2n + 2 - =
(2 )y t
Hm 7 2 \ 6
T-+0 A plUl de ® e—(?.n-l-z - 3?>£
Py n=0 an + —
\_ x

Displacement of Upper Interface

(B62)

(B63)

A quantity of primary interest is the shape of the distorted inter-
face between the supersonic and the subsonic flows. The slope of this
interface is related very simply to the already determined pressure at
the interface, according to the following considerations. If the dis-
placement from the undisturbed position is denoted by ”U’ this slope is

given by

d”U
T Uz

approximaetely. Now, applying the boundary condition of equal slopes on

all £, y=0

-

both sides of the interface, equation (BlB) gives

2 _ 7L

Uy Uy

Furthermore, vy can be related to up .

by differentiation of g,

all £, y=0

(B73)

(B74)

In the region & < 0, only out-
going waves exist, corresponding to the g-function in equation (BZ); thus
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vl = - Blul E < 0, y=0 (B75a)
In the region & >0, there exists, in addition, the incoming wesk shock
providing a flow deflection e for y-+0,; corresponding to the f-function
in equation CBZ); this provides'an additional term such that

lim vy = - Byuy - 28Uy E>0,y=0 (B75b)
v+ 0

When these equations are combined, there results

(

ul
-Bl—U— ) €<0)y=o
1
dnU 4 :
lim — = ‘ (B76)
dx
- Bl — - 2¢, E>0,y=0
Then, by virtue of the relation = - p3Un, this may be written
'J:' ) E<O0,y=0
2 1 2 U
\ 5911
d
Lin E”UJ (877)
T=0 1 Ap
SB(T——=| -2 E>0,y=0
2 1 UZ
L z N1

This is the desiréd relation between the local slope and the pressure of
the interface.

Upon substitution of the calculated pressure, equations (B62) and
(B63), there results

el

— sin 6 , E<O (B78)

ki
on =
n=0 + ﬁ
a
e U ;
" y=*+0 ) = —(2n+;§
2ef(8ID 0 % e > ° _1], £>0 (B79)
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Expressions for disgplacement of upper interface. - Denoting
d an.. % ' '
in 0y 0

1 = Y o equation (B50) gives
r=+0
dnpr* dng % arn. ., *
g _ . dng g (B80)
g : B2
Thus, with the assumption that .
My¥—; 6) =0 . (B8L)
d
the expressions for o cen be integrated and will yield
- ész - Q-E
7 . 2e e
7o, (g 6) = 3 sin @ 2 £§<0
, n=0 (2n+2 - —) (882)
while for £ > 0, since
© ang*(z<0; o) ® angX(z>0; )
my*(E< 05 6) Ty ;
m*(E; 8) = = dg + T dE (B83)
- +0
there 1s obtained
o), |°%
- - -l 2n + = E
2€ 1 sin 0 e
T]U*(E,G)-?Sinez 2“25 = 2'*‘5
e ]
n=0 (2n+2 - E) =0 (Zn + ;)_
L J+0
(BB2)
Hence ‘
6
- -(en + ;)z
B85S
ng(gs 0) = ZEemo ) S oS |- ae, g0 %)
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Therefore, in summary,

had 8
rgigmez.e__é&.:_f E<O (B82)
-(2n+9£

£ - 2%  E>O0  (pss)

-2—5511162; 1 f—2
E a\? 92 92
(2n+2-;) (2n+;) én+i)

z"’ga (& 6) = J

\

By inmspection of eguations (B82) and (B85), it is noted that
T;*(€; 6) is finite and continuous at ¥ = 0, vhile, on the other band,
equations (B78) and (B79) show that dmy#/dx is infinite at & = 0.

Displacement of Lower Interface

Finally, the expression for the displacement of the lower interface
will be derived. If the displacement from the undisturbed position is
denoted by 7y, this displacement will have a slope given in linearized

approximation by :

dnr, V2 3=
- 2 ==
& = U, _ (B86)

or, with use of equation (B22),

]

g &

')«B'Z{Gg(l) sin Ax + Hy(\) cos xﬂdx (887)
A el

where- Go(X\) and ﬁ'z(x) are given by equations (B34) and (B35). That is,
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2
M2 B
a —z—egﬁcos2 (r-—zsinh kbﬁz+x—z'cosh WBo) sin Ak
T, T By My B1 :
& " 2\? 2, 2y 1 Wt
(&) . (r® + %) 5 (cosh 2XBy - cos 6)
My
2e P2 o0 7 P2 Mp?
"2 E c 5 (—Y B cosh AbBy + A ™ sinh )‘bﬁgcos Ax
1 ' 1
: da
2 1 o
(%22> (Yz + 12) 5 (cosh ZXbBZ - cos 9)
Ma 2
M (B88)

Limit as 10 (incoming weve *step function). - Consideration will
now be given the various parts of the expression for dnU/ dx as one again

passes to the 1limit 1 = 0. For

Y sinh ()\bﬂz) sin Ax

I, = dx (B89
6 b (v@ + xz)(cosh 2bA8, - cos 6) (889)
first letting A = yz, there is obtained
sinh (ybzgs) . sin (yxz)
lim Tg = lim 5 'dz = 0 (B90)
T+ 0 T=+0 (1 + 2¢)(cosh 2rzbB, - cos 6)

0
Similarly, for

I = ¥ cosh (AbBs) cos Xx
7 > 5 an (B91)
(& + 2%)(cosh 2)\bB, - cos 6)

0]
) h (rzbpg) cos (rax)
. . cosh (yzbp cos (rzx
Lim I, = lim - 22 dz (B92)
Y0 1 =0 A (1 + z2)(cosh 2yzbB, - cos 6) '
- .
1 dz 1 L
1 - cos 6 2 1l-cosb 2




30
so that
. L

1im I7 = ———ﬁ

For
Ty = - A cosh (AbB3) - sin Ax a

(2 + %) (cosh 2\bB, - cos 0)

and

A sinh (AbB,) - cos Ax :
(AbB,) o

H
i

o (rz + xz)(cosh Zkbaz - cos 9)

introducing S and g as before yields

‘Scosh-s-sj‘_nﬁg-

a2 x
2+ )
e+ (cosh S - cos 8)
o (o
and 4 ’
, .8 sk
L bt S sinh 5 Cos
9= 2 o2 ds
o (‘r + (cosh S - cos 8)
408,
whence o
- g
cosh'% sin SE
1im I, = 19
0 8 S(cosh 8 - cos 8)
0
and : \ ‘ ‘
© sinh —S— cos §:t—£
i Ig = S(cosh S - cos 9) ds

0. . _ .
T.._ 0

TNACA TN 2860

(B93)

(B94)

(B95)

(B96)

(B97)

(B98)

(B99)
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Furthermore, following reference 2, it can be shown that, for & > O,

r fuS 1 ' i; (_l)n e(\2n+l)E eet%e-)E + e-c%g
n=0

- + E<O B100)
4:3:!.1122 Zsin-e- 21:\+2-2 2n+g ’ (
2 2 o x =
lim Ig = ¢
T+0 0 - l‘-(ﬂ (’ﬁa
kS 1 n -(2n4+l e V" e\ ™
* o2 8 92( e 6 £>0 (B201)
Bing Zsin-in=o E 2n + 2 - = 2]1‘*‘;

and

r - -9) _((-Gz
T T
o1 Z( > (2n+1)E e(k e | z<o (B102)
2cos§-n=0 2n + 2 - = 2n + —
x
lim I = 4 16 -6\ )
r+0 9 TR s U (5 (5)+ :
- 9;(-1) e e 5- —5| E>0 (B103)
2 cos > 2n + 2 - = 2n + -
2 ::J .
\.

Simplification of expressions for slope. - Combining these limits
and using equations (B32) and. (B40) yield :

( 6)
~-{2n +
dn
lim —Z= - 2 sin’ g (—— - Z\,()’Ele £ >0
r-+0 sin z :tsin»—n=0 T
(B104)
That is,
(2n+%)£
dTIL n e
lim —2= - 2¢ l——sin (-1)_——6—,.§>o
r=+0 n—O» 2n +

(B105)




32 ' NACA TN 2860

Furthermore, by symmetry considerations of the various integrands, it
follows that, for & < O,

.

2 Z( 1o ((EmHL)E (_) C—)

1lim EL-=-25 sm%
T -+0 :rsingn 2n+2-; 2n+—
- -0 . -0
—E 'HE
2n+1 (“) %
l'ez('l)ne( e -2 , <0
ﬁsm§n=o 2m2 - & on + 8
7 7
(B1086)
That is,
an it (2n+2--—§
2 e
lim—dJI{' -Ze:—t-sinEZ(-l)ne =—|, &< o0 (B107)
-0 n=0 2n + 2 - =

Therefore, in summary,

( - (2n+2 - ﬁ&:
6
_zgésm§z (-1)* & 9 , E<o0 . (B107)
n=0 2n + 2 - —
dn
Lin =4
T-0 ) (Zn + )E
n
-2¢(1 - = sin 2(1) - g>0  (B10S)
. NE
Final expressions for displacement of lower interface. - If
dny, dnp* |
1im —— 1is denoted by , it is noted that
dx dx
T+0
dn* dn . odn.*
il - - R (B108)

Tax  adradax dag  2bB,

so that integration of equations (B105) and (BlO7), along with the boundary

condition

n¥*(-=3 6) = O (B109)
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yields, for ¥< 0,

. (2n+2 - =&
o nL*(E,G)— % o Z(-l) . g <0
- 2n+2 -—-) ’
. I
\ , (B110)
For g >0,
™ angxlz<030) " angx(@030)
' Ny #(E<0; Ny #(E>0;6
*(E;0) =  ———— -
Ny (%;0) iz ag + I ag
- _|_O
so that
= ,-2n+25
-z—b%gnLi(E;e)n-ZzE+%sin%E (1) -1 5+ L z_e( :) , E>0 .
B (2n+2—§) én+§)4 (2n+%) ( )
B111).
Therefore, in summary
o - 9 |
E (1P E—— , E<oO (B110)
an+2-9) i
ﬁ%ﬂﬂ(i;e)u{ ” T (zn 95
. - +
2ek+ £ sin g E (-1) = 1 e -, ¥>o (mn)

S A

" Both g »(&;0) and dnL*/dx are continuous at E = 0. The con-
tinuity of 'qL*( E;0) is readily seen while the continu.ity of dnL*/d.x

mey be shown by letting x = 9/2:1: in the formule for j[/sj_n sx given on
page 208 of reference 10.
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2bBo

TABLE I - PERTURBATION OF UPPER INTERFACE

g

2¢

against £ = —Zb_j%{_ for 6 = n/4, n/2, and 3n/4
2 .

E 6=n/4 6=1/2 6=37/4
-5.0 0.00001| 0.00008 0.00028
-4.0 .00007 .00035 .00087
-2.5 .00093 .00335 .00632
-1.75 | .00345 .0103 .01620
-1.00 .0132 .0324 .0416
- .75 .0208 .0480 .0584
- .50 .0335 .0722 .0820
- .40 .0410 .0856 . 0944
- .25 .0562 .1120 .1180
- .10 .0804 .1520 .1517
- .05 .0925 L1715 - 1675

o .1108 .1993 . .1891

.01 L1138 .2009 .1856

.05 .1215 .2018 .1679

.10 .1253 .1958 .1408

.25 .1240 .1564 .0450

.40 .1169 .1003 -0.0620

.50 .1017 .0566 - 1377

.75 .05186 -0.0686 - .3363

1.00} -0.0137 - 2117 - 5450
1.75} - .2803 - .7168 ' | -1.2120
2.50 | - .8323 | -1.3002 -1.9155
4.0 | -1.5293 | -2.6075 -3.3750
5.0 | -2.2368 | -3.540 -4.3650

35
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TABLE II - PERTURBATION OF LOWER INTERFACE

¥ inst =
2e 8% £ = %8,

E B=xfa B=1/2 6=3x/4 |
-5.0 | -0.000013 | -0.00011 | -0.00073
-4.0 |- .00007 |- .00050 ]| -~ .00254
-2.5 |- .00100 | - .00472| - .01653
-1.75 | - .00368 | - .0144 | - .0420
-1.00 | - .0134 - .0436 | - .1057
- .75 | - .0205 - .0625 | - .1428
- .50 | - .0309 - .0890 |- .1918
- .40 |- .0362 - .1021 | - .2150
- .25 |- .0459 - .1250 | - .2550
- .10 | - .0577 - .1522 | - .3005
- .05 | - .0622 - .1623 | - .3173

0 - .0670 - .1728 | - .3345

.05 |- .0721 - .1841 | - .3528

10 |- 0775 - .1962 | - .2718

.25 | - .0959 - .2358 | - .4330

.40 | - .1173 - .2803 | - .5013

.50 | - .1338 - .3130 | - .5503

.75 | - .1811 - .4065 | - .6860
1.00 |- .2389 - .5168 | - .8385
1.75 |- .4735 - .9293 | -1.3803
2.5 - .7942 -1.4453 | -2.0100
4.0 -1.6420 -2.6725 | -3.4025
5.0 -2,3253 -3.5775 | -4.4875

for 0= wn/4, nf2, and 3x/4
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€ by
Region l: Supersonic flow
T : - X
b . R ‘ Mo
—l_ Region 2; Subsonic|flow —_—

Reglon 3; Fluid at|rest

Figure l. - Compression wave with deflection angle € incident upon the
interface between & supersonic stream and a parallel subsonic stream

flowing over fluid at rest.
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Figure 2. - Mach mumber M, -in the supersonic stream against
Mach number My in the subsonic stream for séveral values
of the Mach mumber parameter 8.

2665



e e e ———— e e

5992

40 2
S
g
oo
(0]
3
3.2
L 2.4
.,
a5 \
% Mo N ‘
§ Dc-.' N
Q N
Ju—ilﬁ\ll's \
\\\\
8 N \\
. - “'—-\
7
/ ":E%CA: e
0 — ’ :
-3 -2 ©al 0 1 2 . 3 4
£ = {;%; -

— - () Mach mmber parameter @, n/4.
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(c) Mach mmber paremeter &, 3n/4. ‘
Figure 3. - Concluded. Pressure locrement Apu* plotted against distance z Ffrom point
of incildence of wave upon upper interface.
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(2) Schematic.
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Figure 5. - Refinement of model of figure 1 to more closely represent
shock boundary-layer interaction. (I, point of shock incidence;
R, reattachment; 8, initial separation.)
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